乐9乐开发网
广告位招商联系QQ:123077622
 
广告位招商联系QQ:123077622

OpenCV 图像梯度的实现方法

乐9乐开发网 https://welsheng.com 2021-07-26 12:57 出处:网络 作者: 我是小白呀
目录概述梯度运算礼帽黑帽Sobel 算子计算 x计算 y计算 x+y融合概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 编程客栈今天小白就带大家一起携手走进 OpenCV 的世界.
目录
  • 概述
  • 梯度运算
  • 礼帽
  • 黑帽
  • Sobel 算子
    • 计算 x
    • 计算 y
    • 计算 x+y
    • 融合

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 编程客栈今天小白就带大家一起携手走进 OpenCV 的世界.

梯度运算

梯度: 膨胀 (Dilating) - 腐蚀 (Eroding).

例子:

# 读取图片
pie = cv2.imread("pie.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 计算梯度
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel=kernel)

# 图片展示
cv2.imshow("gradient", gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

OpenCV 图像梯度的实现方法

礼帽

礼帽 (Top Hat): 原始输入 - 开运算结果.

例子:

# 读取图片
img = cv2.imread("white.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel=kernel)

# 图片展示
cv2.imshow("tophat", tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

OpenCV 图像梯度的实现方法

黑帽

黑帽 (Black Hat): 闭运算 - 原始输入.

例子:

# 读取图片
img = cv2.imread("white.png")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel=kernel)

# 图片展示
cv2.imshwww.cppcns.comow("blackhat", blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

OpenCV 图像梯度的实现方法

Sobel 算子

Sobel 算子 (Sobeloperator) 是边缘检测中非常重要的一个算子. Sobel 算子是一类离散性差分算子, 用来运算图像高亮度函数的灰度之近似值.

格式:

cv2.Sobel(src, ddepth, dx, dy, ksize)

参数:

  • src: 原图
  • ddepth: 图片深度
  • dx: 水平方向
  • dy: 竖直方向
  • ksize: 算子大小
  • SOoGKof

计算 x

代码:

# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobelx = cv2.Sobel(img, -1, 1, 0, ksize=3)

# 展示图片
cv2.imshow("sobelx", sobelx)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

OpenCV 图像梯度的实现方法

计算 y

代码:

# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobely = cv2.Sobel(img, -1, 0, 1, ksize=3)

# 展示图片
cv2.imshow("sobely", sobely)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

OpenCV 图像梯度的实现方法

计算 x+y

代码:

# 读取图片
img = cv2.imread("pie.png")

# Sobel算子
sobel = cv2.Sobel(img, -1, 1, 1, ksize=3)

# 展示图片
cv2.imshow("sobel", sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

OpenCV 图像梯度的实现方法

融合

代码:

# Sobel算子
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)

# 转换成绝对值
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.convertScaleAbswww.cppcns.com(sobely)

# 融合
sobel_xy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)

# 展示图片
cv2.imshow("sobel_xy", sobel_xy)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

OpenCV 图像梯度的实现方法

注: 当 ddepth 设置为 -1, 即与原图保持一致, 得到的结果可能是错误的. 计算梯度值可能出现负数, 负数会自动截断为 0. 为了避免信息丢失, 我们需要使用更高是数据类型 cv2.CV_64F, 再通过取绝对值将其映射到 cv2.CV_8U 类型.

到此这篇关于OpenCV 图像梯度的实现方法的文章就介绍到这了,更多相关OpenCV 图像梯度内容请搜索我们以前的文章或继SOoGKof续浏览下面的相关文章希望大家以后多多支持我们!

扫码领视频副本.gif

0

精彩评论

暂无评论...
验证码 换一张
取 消